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ABSTRACT

A van der Pol relaxation oscillator that is subjected to external

sinusoidal forcing can exhibit stable and unstable periodic and almost

periodic responses. For some forcing amplitudes it even happens that

two stable subbarmonics having different periods may coexist. We in-
vestigate here the stable responses of such forced oscillators. By

numerically computing the rotation number of stable oscillations for

various values of the forcing amplitude and oscillator tuning, we

obtain descriptions of regions of phase locking, successive bifurcation

of stable subharznonic and almost periodic oscillations, and overlap

regions where two distinct stable oscillations can coexist.
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0. Introduction.

The van der Pol equation is typical of components arising in a

wide variety of applications ranging from electrical circuitry to phy-

siology. In this paper) we study it in the form

d2u/dt2 + k(u2 - 1) du/dt + u /4k B cos(~pt + a)

where k is the tuning parameter , and B, ,.
~~ 

and a are the (normalized)

forcing amplitude, frequency and phase , respectively.

Periodic solutions of this equation , and their stability prop erties

have been extensively studied in the past fifty years . The regular case

(ki~cl) has been studied with averaging methods by Bogoliuboff , et.al.tl],

and by analytic and topological methods by Cartvright and Littlewood and

others[2 ,3).

The singular case (lc>l) is more difficult to analyze. Early

studies of the free problem (B 0) provided descriptions of .the relax-

ation oscillation and its period[I~]. The period of the free oscillation

was shown to be

T —  Ø - 2 l o g 2) k + 7.Ol1e k 113 - l .32 5+O(log k/ k)

for k )Dl. Later stud ies gave methods for approx imating the relaxation

oscillation by complicated combinat ions of matched asymptot ic expansions

and avera ging procedures Us ,5) .
The forced singular probl em (k >> 1, 3 ~1 0) exhibits remarkable

solutions , and it serv•s as the main point of the investigations by

Cartvright and Litt l.wood[3,6-l0) . A similar problem , but with

- 1 re placed by st$num(v2 
- 1) warn itudiod by Levinson Li i )

~~~Tiii~~~ _______________
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by patching together explicit solutions. These investigations showed that

there are parameter values among 0 < B < 2/3 , k > >  1, for which two

stable periodic sôlutions coexist. These are distinct subharmonics having

different periods , say 2n ± I times the forcing period 21t/~~. one
striking implication of this was pointed out by Levinson: For fixed

B~ k and ,s. in such an overlap region, there are two stable subharinonlcs

having periods 
~ 

— (2n - 1)2 IC/p and - (2n + 1)2 lt/1.4 , respectively.

Given any sequence of zeros and ones , let marks be made on the t ime axis

using lengths 
~ 

and g~ , successively as prescribed by the sequence. Then

there is a solut:ion of the equation having zeros near and only near

the marks. Thus, there is a kind of randomness exhibited by the solution

set. These solutions will be discussed later.

Two other studies of the forced singular case that are related to

our investigation mate made by Hayashi[12] and in (13]. In the first ,

a numerical calculat ion was perfo rmed on an analog device for fixed k.

Subharmonics having periods 2,3,4,5 and 6 t imes the forcing period were

found for various values of B and p~., and an overlap region for solutions

having periods one and three times the forcing period was found. In the

second , a formal construction was used to derive necessary conditions

for the existence of certain subharmonics . It was shown that conditions

for various subharmonics could be satisfied simultaneously by some values

ofB an d k.

Our methods are described in section 1 of this paper, and in section 2,

the results of our calculations are presented.
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BEST AVAILABLE Copy
1. Methods.

The model is studied here for the parameters

satisfying

a 0, 1, 0< B< .8, 0< 1/k < .2.

The choice a = 0 of course is1 unimportant since this can always be

4omplished by a translation of the time variable. Our choice of ii. — 1

was made in order to more easily relate our results to those of Cart-

wright, Littlewood and Levinson. The calculations carried out by Hayashi

suggest that similar results to ours would be obtained for any fixedft.
vi, lEr PcI

Setting €— 1/k and integrating the1equation once leads to the~first

order system

dy/dt a (l/E)(y - y3/3 - v)
(1)

dv/dt — fy  
- B cos t

I
It is this system that we study here for 0< B < .8, 0< €< .2.

Solutions of this system for various initial data (y(0),v(0)) define

a transformation of the (y v)-plane at t 0 to the (y,v)-plane at t — 21C~

P : (y(O) ,v(O)) —,. (y(2it) ,v(2~)) .

This is the Poincar~ mappi’~g, and invariant sets for this mapping can

describe periodic and almost periodic solutions of the equation. For

ezasple, a solution (subharmonic)having period 3~2~C will define a three

point invariant set for P. If this subba rmonic is stable , then a

- _ _ _  .
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6
neighborhood of any one of these points will approach the point under

iterations of — P.P.P.

• 
A given oscillatory solution can be described further by its rotation

number. This is defined by

f — u r n  (1/2nlV ) I arg(P”y )

for any pointf (y0,v0) lying on the 
invariant set of P corresponding

to the solution. The notation arg(y0,v0) denotes the positive 
angle

this vector makes with the positive y-axis. For example, if the oscill-

ation is a subharnonic having period 3 21r, then its rotation number can

be either 1/3 or 2/3. In general, the rotation number of an oscillatory

solution can be rational or irrational . Whenf is rational, the denomin-

ator gives the period . Also, whenf is rational, there may be several

distinct solutions having that rotation number. For example, if f  a 1/3 ,

there is a three point set that is invariant under the Poincar~ map,

and through each one there is a solution having f a 1/3.

The rotation number was first introduced by Poincar~, and it has

been used and studied in many contexts.since then. It is known that

the rotation number of a stable oscillation depends continuously on

the parameters in the problem, and so it is constant over a neighborhood

of parameter values. In our problem there are both stable and unstable

oscillations present for most of the parameter values. Therefore, the

system cannot be characterized by a single rotation number. Even when

attention is restricted to stable oscillations, there need not be a

unique rotation number since two stable oscillations can coexist.

________________ - 

-
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Our methods consist of fixing values for B and C, then selecting an

initial point (y(O),v(O)). Next, we solve (1) using an implementati on of

Gear ’s code due to Eindmarshtl5]. This is a variable step, variable order

numerical integrator. When this solution equilibrates(usually to six or

seven place accuracy over several periods), its rotation number is easily

calculated. Two techniques were used for selecting initial data. First,

we allow E and B to change systematically along a straight line in the

(BM- plane, with each new calculation using the last value from the previous

one as an initial point. In this way, overlap regions were determined

by passing over them in two different directions. The other technique

involved fixing ~ and E, and then calculating the rotation number for

a sequence of initial data lying near the relaxation oscillation of

the free problem.

2. Nuu~erjca1 evaluation off and its implications.

Both kinds of cal cu].ations described in section 1 were performed

for 0 < B< .8 and 0< ~ < .2. The results of these calculations are

sunmiarized in Figure 1 by a contour mapping of f as a function of B and f

(FIGURE i)

The free problem (B - 0) is described along the line B - 0 in
Figure 1. Since the forcing frequency is 1 in the forced problem, the

candidates for solutions that develop into subharmonics are those free

oscillations •whos.-periods are integer multiples -of 2~~. These occur

values indica ted in Table 1.

(TABLE 1)

These are also indicated on Figure 1, and we see that appropriate sub-

harmonics are observed near these points for B near zero. The values in

Ta:ble 1 coms from evaluation of th. first few terms in T given in section 0.

~~~~~~~~~~~ i~
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For positive values of B, we see that there are regions over which

p is constant. The profile of 
p 

for B - .1, .01 < f < .1, is shown in

Figure 2.

(FIGURE 2)

This indicates thatf is a monotonically increasing function off which

is constant over intervals. Such behavior is known in other problems

(16], and it illustrates the well known phenomenon of phase locking, where

the frequency of the response remains constant when parameters are changed

slightly.

The prof ile of f for B = .11.75 is more complicated since discontin-

uities inf occur. Figure 3 indicates thatf is continuous for £ > .04 ,

but that it is double valued over intervals below that.

(FIGURE 3)

The overlap intervals describe parameter values where there is not a unique

stable response. The implications of overlaps will be discussed later.

We did not attempt to calculate irrational values of)’. However,

they prestr iblj occur, and they correspond to almost periodic solutions

of the equation that have quite small parameter sets over wich they are

stable.

An indication of the behavior of unstable solutions is given by

the behavior of stable solutions near where they lose stability. In

Figure 4 , five examples are presented which show this. B is fixed at

B — .475 , and E is decreased through the region wheref a 113 . A stable

solution havin,é period 3.2fr is plotted for each of several g values by

projecting the solution back onto the (y,v)-plane.

(FIGURE 4)

These show that as f decreases , the solution comes successively closer

to the free relaxation oscillation , at the same time layering itself over

the two vertical segments.

— -
~~~J-
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3. Sumsary

The main motivation for this investigation is the study of stable
Ca

oscillations in the forced van der Pol equation.~ -this is a difficult

problem to study analytically) we have calculated the rotation numbers

of the stable responses of a van der Pol relaxation oscillator to sin-

usoidal forcing. The results suggest that the rotation number (if)

defines a continuous, but piece-wise constant. surface except in overlap

regions where it is double valued, having what resemble folds.

I The parameter

ranges wheref is single Y~alued illustrate the phenomenon of phase locking;

i.e., the response frequency is constant over a neighborhood of parameter

values. Various phase locking regions of subharmonic and ultra-sub-

harmonic responses are described by these calculations.

Calculations done near the start of overlaps show that the surface

steepens as the overlap is approached. While the overlap regions might

be described by simple folds in the surface with the upper and lower

branches being stable, our methods give no indication of the actual

behavior of the unstable solutions having rotation numbers between the

two stable ones. In addition, there may be more than two stable oscilla-

L 

tions having distinct f values coexisting, although we were able to -

detect only two stable responses in any overlap region. For example,

stable solutions having high p.riods(> l00~2~~) and small domains of

attraction would be beyond our calculations. Certainly, if the form

• of van der Pol ’s equation were modified, as in studies of multi-vibrators,

then coexistence of more than two stable oscillations would be expected.

J
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The overlap regions are quite interesting. Since stable oscillations

having different frequencies coexist near the free relaxation oscillation,

their domains of attraction must be intertwined in a very complicated way.

In particular, the system’s behavior is very sensitive to small pertur-

bations. Presumably the random behavior suggested by Levinson is to

be found among the solution set having initial values on the boundary of

the domains of attraction.

Finally, our calculations are consistent with the results established

by Cartwright and Littlewood. Their results can be demonstrated in

Figure 1 by fixing £ at a small value, say .01, and then observing the

f values as B changes. They show that for sufficiently small E, the

interval 0 < B < .8 can be broken up into three disjoint sets. One con-

sists of intervals over which f is single valued, another consists of
intervals over whichf is double valued, and the third is a small set

that is ignored. The intervals of single and double values of f  are

clear in Figure 1, and the remainder consists of sets where
f 

takes on

irrational values .

Prom another point of view, the profile of the 
p 

surf ace~for B

fixed and £ decreasing,can be interpreted as a bifurcation diagram where

only stable branches are plotted. For example, in Figure 2 as f decreases

from 0.1, the solution having period 3.2r loses its stablility with the

appearence of other oscillations. Presumably the periodic solution is

still present for smaller values of E, but it is no longer stable.

Therefore , if Figure 2 were viewed as being a bifurcation diagram, then

• each point on the graph should be extended as a straight line to 8— 0.

If the unstable branches are included, then the diagram will be solid above

th. lowest stable value since periodic solutions presumably pers ist for

decreasing I. 

~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~ 
- -
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~~fr Other interesting oscillators can be constructed using information

compliled here. For example, if B is allowed to vary slowly back and

fo~th across an over lap region, then the solution would ha~ie onef value

until the overlap boundary is crossed, when it would equilibrate rapidly

to a solution having the other value. Then as B reverses, the opposite

happens. On the other hand, if B and ~ vary slowly in other regions,

the solution could appear to be chaotic.

Some indication of the unstable solutions was obtained here from

calculated solutions for parameter values near where they lose their

stability. This indicates that the solutions are layered near the free

relaxation ostillation, suggesting 4 n  onion skin configuration reminiscent

of that found in [14) for a two dimensional strange attractor.

We have not attempted in this paper to rigorously derive any of

the results suggested by our calculations. However, the calculations do

give an indication of the nature of stable responses in this system,

which pose difficult analytic problems.

____________ .—. ,—•— 
— • .  . 
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TABLE I

Protosubhartnoni:~~ Free oscillations(B — 0) having period 2lCn.

a
2 .16

. 3  .095

4 .069

5 .0511.

6 .044

7 .037

8 .033

9 
- 

.029
10 - .026
11 .o24

12 .022
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